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ESTIMATES ON THE DISTANCE OF INERTIAL MANIFOLDS

JOSÉ M. ARRIETA∗,† AND ESPERANZA SANTAMARÍA†

Abstract. In this paper we obtain estimates on the distance of the inertial manifolds for dynamical systems
generated by evolutionary parabolic type equations. We consider the situation where the systems are defined

in different phase space and we estimate the distance in terms of the distance of the resolvent operators of
the corresponding elliptic operators and the distance of the nonlinearities of the equations.

1. Introduction

Many systems coming from Partial Differential Equations of evolutionary type, enjoy the property of
having a finite dimensional manifold which is smooth, invariant and exponentially attractive and carries
over all the asymptotic dynamic information of the system. All bounded invariant sets (equilibria, periodic
orbits, connecting orbits, attractors, etc) lie in this invariant manifold. The existence of these manifolds is
proved once we guarantee that the associated linear elliptic operator of the system has large enough gaps
in the spectrum and it is obtained through an appropriate fixed point argument. Proving that we have
these gaps is one of the major difficulties of the theory, but still there is a class of equations (for instance,
one dimensional parabolic equations) for which these inertia manifolds exist and once they exist, we can
reduce the system to a finite dimensional one, for which more techniques are available. We refer to [4, 16]
for general references on the theory of Inertial manifolds. See also [15] for an accessible introduction to the
theory. These inertial manifolds are smooth, see [7]. We also refer to [11, 9, 3, 16, 5, 8] for general references
on dynamics of evolutionary equations.

Just because of the relevance of these manifolds, it is very important the analysis of its behavior under
perturbations of the equation. Identifying the kind of perturbations allowed so that the inertial manifold
persists and estimating the distance of the inertial manifolds is an important task which have implications
in the analysis of the dynamics of the equations. One of the first examples in which an analysis of the
persistence of inertial manifolds was carried over was in [10], where the dynamics of a parabolic equation
in a thin domain is analyzed. This paper has been one of the main motivations for our work. In the
case treated in [10], the limit equation is one-dimensional for which the gap condition is satisfied since the
elliptic operator is of Surm-Liouville type and spectral gaps are known to exist. The inertial manifold of the
limiting one-dimensional problem is proved and after an analysis of the continuity of the spectrum under
this perturbation, the inertial manifold is lifted to the perturbed 2-dimensional problem in the thin domain.
An estimate of the distance of the inertial manifolds is provided, although it is not as sharp as the one we
obtain in this paper. Also, some general results on persistence can be found in [4], and also in [12], where
the results are more focused on the numerical approximations of the equations. More recently some results
on the behavior of these manifolds under perturbation of the domain have appeared [13, 17], although they
do not provide estimates on the distance of the manifolds.

In this work we provide estimates on the distance between the inertial manifold of a system and the
inertial manifold of a perturbation of it. The systems may have different phase space (so we may apply
these techniques to domain perturbation problems) and the distance is estimated in terms of two parameters
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only: the distance of the resolvent operators of the elliptic part and the distance of the nonlinearities of the
equations, see Theorem 2.2.

We describe now the contents of the paper.
In Section 2 we introduce the notation, the main hypothesis that we will impose, (H1) related to the

convergence of the resolvent operators and (H2) related to the convergence of the nonlinarities. We also
state the main result of the paper, Theorem 2.2.

In Section 3 we analyze the behavior of the linear part of the equations. We show the convergence of the
spectrum once the resolvent convergence is imposed and obtain different estimates on the linear problems.

In Section 4 we obtain the existence of the inertial manifolds. To accomplish this task we apply the results
from [16].

In Section 5 using the implicit definition of the inertial manifolds (given as a fixed point of an appropriate
functional) and with the estimates of Section 3 we prove the main result.

2. Setting of the problem and main results

Let A0 be a self-adjoint positive linear operator on a separable Hilbert space X0 with domain D(A0), that
is A0 : D(A0) ⊂ X0 → X0. We denote by Xα

0 , with α ∈ [0, 1], the fractional power spaces associated to the
operator A0 and ‖ · ‖α its norm, defined in the usual way, see for instance [11, 8].

We consider the following evolutionary problem,

(P0)
{

u0
t +A0u

0 = F0(u0),
u0(0) ∈ Xα

0 ,
(2.1)

with F0 : Xα
0 → X0 certain nonlinearity guaranteeing that we have global existence of solutions.

We also consider a perturbed problem,

(Pε)
{

uεt +Aεu
ε = Fε(uε), 0 < ε ≤ ε0

uε(0) ∈ Xα
ε ,

(2.2)

where Aε is also a self-adjoint positive linear operator on a Hilbert space Xε, that is Aε : D(Aε) = X1
ε ⊂

Xε → Xε, and the nonlinear term Fε : Xα
ε → Xε is another nonlinearity guaranteeing also global existence of

solutions of (2.2). We will impose appropriate hypotheses on Fε and Aε so such that problem (Pε) converges
to (P0) as ε tends to 0 in some sense.

Since our aim is to compare different aspects about the dynamic of both problems, (2.1) and (2.2) and
these dynamics live in different functional spaces X0, and Xε, we will need to compare functions from X0 and
Xε, (Xα

0 and Xα
ε , respectively, with α ∈ [0, 1) fixed above). So, we assume the existence of linear continuous

operators, E and M , such that,

E : X0 → Xε, and M : Xε → X0,

and,
E|Xα0

: Xα
0 → Xα

ε , and M|Xαε
: Xα

ε → Xα
0 .

We will assume they are bounded uniform in ε and without loss of generality we will assume

‖E‖L(X0,Xε), ‖M‖L(Xε,X0) ≤ 2, ‖E‖L(Xα0 ,X
α
ε ), ‖M‖L(Xαε ,X

α
0 ) ≤ 2. (2.3)

We also assume these operators satisfy the following properties,

M ◦ E = I, ‖Eu0‖Xε → ‖u0‖X0 for u0 ∈ X0. (2.4)

We will also assume that the family of operators Aε, for 0 ≤ ε ≤ ε0, have compact resolvent, that is, the
resolvent operators are compact for all λ ∈ ρ(Aε) where ρ(Aε) is the resolvent set of Aε. This fact, together
with the fact that the operators are selfadjoint, implies that its spectrum is discrete real and consists only
of eigenvalues, each one with finite multiplicity. Moreover, the fact that Aε, 0 ≤ ε ≤ ε0, is positive implies
that its spectrum is positive. So, we denote by σ(Aε), the spectrum of the operator Aε, with,

σ(Aε) = {λεn}∞n=1, and 0 < c ≤ λε1 ≤ λε2 ≤ ... ≤ λεn ≤ ...
and we also denote by {ϕεi}∞i=1 an associated orthonormal family of eigenfunctions.
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With respect to the relation between both operators, A0 and Aε we will assume the following hypothesis

(H1). With α the exponent from problems (2.1) and (2.2), we have

‖A−1
ε − EA−1

0 M‖L(Xε,Xαε ) → 0 as ε→ 0. (2.5)

Notice in particular that from (2.5) we also have that ‖A−1
ε E − EA−1

0 ‖L(X0,Xαε ) → 0 as ε → 0. Let us
define τ(ε) as an increasing function of ε such that

‖A−1
ε E − EA−1

0 ‖L(X0,Xαε ) ≤ τ(ε). (2.6)

With respect to the nonlinearities F0 and Fε,

(H2). We assume that the nonlinear terms Fε : Xα
ε → Xε for 0 ≤ ε ≤ ε0, satisfy:

(a) They are uniformly bounded, that is, there exists a constant CF > 0 independent of ε such that,

‖Fε‖L∞(Xαε ,Xε)
≤ CF .

(b) They are globally Lipschitz on Xα
ε with a uniform Lipstichz constant LF , that is,

‖Fε(u)− Fε(v)‖Xε ≤ LF ‖u− v‖Xαε . (2.7)

(c) They have a uniform compact support in ε ≥ 0: there exists R > 0 such that

SuppFε ⊂ DR = {uε ∈ Xα
ε : ‖uε‖Xαε ≤ R}.

(d) Fε approaches F0 in the following sense,

sup
u0∈Xα0

‖Fε(Eu0)− EF0(u0)‖Xε = ρ(ε), (2.8)

and ρ(ε)→ 0 as ε→ 0.

As we will see below, the convergence of the resolvent operators given by hypothesis (H1) guarantees the
spectral convergence of the operators, that is, the convergence of the eigenvalues and the eigenfunctions (or
eigenprojections). This implies in particular that if we have a gap on the eigenvalues of A0, we will also have,
for ε small enough a similar gap for the eigenvalues of Aε. This fact, together with the uniform estimates
on the nonlinerities Fε given by hypothesis (H2), guarantees that we may construct inertial manifolds of
the same dimension for all 0 ≤ ε ≤ ε0. We will follow the Lyapunov-Perron method, as developed in [16] to
obtain these inertial manifolds Mε, 0 ≤ ε ≤ ε0. As a matter of fact, consider m ∈ N such that λ0

m < λ0
m+1

and denote by Pε
m the canonical orthogonal projection onto the eigenfunctions, {ϕεi}mi=1, corresponding to

the first m eigenvalues of the operator Aε, 0 ≤ ε ≤ ε0 and Qε
m its orthogonal complement, see (3.7) and

(3.8). For technical reasons, we express any element belonging to the linear subspace Pε
m(Xε) in the following

basis,
{Pε

m(Eϕ0
1),Pε

m(Eϕ0
2), ...,Pε

m(Eϕ0
m)}, for 0 ≤ ε ≤ ε0,

with {ϕ0
i }mi=1 the eigenfunctions related to the first m eigenvalues of A0, which will be seen below that is a

basis in Pε
m(Xε) and in Pε

m(Xα
ε ). We will denote by ψεi = Pε

m(Eϕ0
i ).

Let us denote by jε the isomorphism from Pε
m(Xε) = [ψε1, ..., ψ

ε
m] onto Rm, that gives us the coordinates

of each vector. That is,

jε : Pε
m(Xε) −→ Rm,

wε 7−→ p̄,
(2.9)

where wε =
∑m
i=1 piψ

ε
i and p̄ = (p1, ..., pm).
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We denote by | · | the usual norm in Rm,

|p̄| =

(
m∑
i=1

p2
i

) 1
2

, (2.10)

and by | · |α the following one,

|p̄|α =

(
m∑
i=1

p2
i (λ

ε
i )

2α

) 1
2

. (2.11)

We consider the spaces (Rm, | · |) and (Rm, | · |α), that is, Rm with the norm | · | and | · |α, respectively, and

notice that for w0 =
∑m
i=1 piψ

0
i and 0 ≤ α < 1 we have that,

‖w0‖Xα0 = |j0(w0)|α. (2.12)

With this notation, if we define the set FL as:

FL = {Φε : Rm → Qε
m(Xα

ε ), such that ‖Φε(p̄1)− Φε(p̄2)‖Xαε ≤ L|p̄
1 − p̄2|α, p̄1, p̄2 ∈ Rm,

and supp Φε ⊂ BR}.
Then we can show the following result.

Proposition 2.1. Let hypotheses (H1) and (H2) be satisfied. Assume also that m ≥ 1 is such that,

λ0
m+1 − λ0

m ≥ 12LF
[
(λ0
m)α + (λ0

m+1)α
]
, (2.13)

and
(λ0
m)1−α ≥ 24LF (1− α)−1. (2.14)

Then, there exist L < 1 and ε0 > 0 such that for all 0 ≤ ε ≤ ε0 there exists an inertial manifold Mε for
(2.1) and (2.2), given by the “graph” of a function Φε ∈ FL.

Remark 2.1. i) Observe that the gap condition is stated for the eigenvalues of the limit problem. In
particular, this implies that the inertial manifold is obtained of the same dimension m for all values of the
parameter 0 ≤ ε ≤ ε0.
ii) We have written quotations in the word “graph” since the manifold Mε is not properly speaking the graph
of the function Φε but rather the graph of the appropriate function obtained via the isomorphism jε which
identifies Rm with Pε

m(Xα
ε ). That is,

Mε = {j−1
ε (p̄) + Φε(p̄); p̄ ∈ Rm}

The main result we want to show in this article is the following:

Theorem 2.2. Let hypotheses (H1) and (H2) be satisfied and let τ(ε) be defined by (2.6). Then, under
the hypothesis of Proposition 2.1, if Φ0, Φε are the maps that give us the inertial manifolds, then we have,

‖Φε − EΦ0‖L∞(Rm,Xαε ) ≤ C[τ(ε)| log(τ(ε))|+ ρ(ε)], (2.15)

with C a constant independent of ε.

Remark 2.2. Observe that the estimate (2.15) consists of two terms, τ(ε)| log(τ(ε))|, inherited from the
distance of the resolvent operators and ρ(ε) inherited from the distance of the nonlinear terms. The factor
| log(τ(ε))| seems to appear because of technical reasons. A better estimate would be ‖Φε−EΦ0‖L∞(Rm,Xαε ) ≤
C[τ(ε) + ρ(ε)], which we have not been able to show, although it is very plausible that this would be true and
it should be the optimal rate.
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3. Linear analysis and spectral behavior

The spectral decomposition of the operator Aε implies that if λ ∈ ρ(Aε) then,

(λ−Aε)−1u =
∞∑
i=1

1
λ− λεi

(u, ϕεi )ϕ
ε
i .

In particular, for ε ≥ 0,

‖(λ−Aε)−1‖L(Xε,Xε) ≤ max
i∈N

{
1

|λ− λεi |
, λεi ∈ σ(Aε)

}
=

1
dist(λ, σ(Aε))

,

and if we denote by
Sa,φ = {λ ∈ C : φ ≤ |arg(λ− a)| ≤ π},

then,

‖(λI −Aε)−1‖L(Xε,Xε) ≤
C1

|λ|+ 1
∀λ ∈ Sa,φ,

with C1 independent of ε.
For α ≥ 0 and for all 0 ≤ ε ≤ ε0, let Aε|Xαε : X1+α

ε ⊂ Xα
ε → Xα

ε , with domain X1+α
ε ⊂ X1

ε , be the
restriction of Aε to the fractional power space Xα

ε ⊂ Xε so that,

Aεu = Aε|Xαε
u ∀u ∈ X1+α

ε .

Then Aε|Xαε
is also a sectorial operator on Xα

ε and with a similar spectral decomposition as above, we can
also obtain the estimate

‖(λI −Aε)−1‖L(Xαε ,X
α
ε ) ≤

1
dist(λ, σ(Aε))

, 0 ≤ ε ≤ ε0.

and the following estimates holds, see [8],

‖(λI −Aε)−1‖L(Xαε ,X
α
ε ) ≤

C1

|λ|+ 1
, 0 ≤ ε ≤ ε0

for λ ∈ Sa,φ, where Sa,φ is the sector of sectorial property of Aε and C1 > 1 independent of ε.

Moreover, since Aε is a sectorial operator, −Aε is the infinitesimal generator of a linear semigroup that
we denote as e−Aεt, where,

e−Aεt =
1

2πi

∫
Γ

(λI +Aε)−1eλtdλ,

with Γ a contour in the resolvent set of −Aε, ρ(−Aε), with argλ→ ±θ as |λ| → ∞ for some θ ∈ (π2 , π), (see
[11]). Since Aε, ε ≥ 0, is a self-adjoint operator, the formula above is equivalent to

e−Aεtu =
∞∑
i=1

e−λ
ε
i t(u, ϕεi )ϕ

ε
i . (3.1)

Moreover, we have the following result.

Lemma 3.1. We have the following estimates for the linear semigroup

‖e−Aεt‖L(Xε,Xε) ≤ e
−λε1t ≤ 1,

and,

‖e−Aεt‖L(Xε,Xαε ) ≤ e−λ
ε
1t
(

max{λε1,
α

t
}
)α

,

for t ≥ 0.
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Proof. With the expression of the semigroup given by (3.1), we get

‖e−Aεtu‖Xαε =

( ∞∑
i=1

e−2λεi t(u, ϕεi )
2(λεi )

2α

) 1
2

.

The function f(λ) = e−λtλα attains its maximum at λ = α
t . Then, we have to distinguish two cases:

If α
t < λε1, we obtain

‖e−Aεtu‖Xαε ≤ e
−λε1t(λε1)α‖u‖Xε .

And if λε1 ≤ α
t ,

‖e−Aεtu‖Xαε ≤ e
−α
(α
t

)α
‖u‖Xε ≤ e−λ

ε
1t
(α
t

)α
‖u‖Xε .

That is,

‖e−Aεtu‖Xαε ≤ e
−λε1t

(
max{λε1,

α

t
}
)α
‖u‖Xε .

In the same way, since

‖e−Aεtu‖Xε =

( ∞∑
i=1

e−2λεi t(u, ϕεi )
2

) 1
2

,

then, we obtain,
‖e−Aεtu‖Xε ≤ e−λ

ε
1t‖u‖Xε .

This concludes the proof of the result. �

With respect to the relation of the spectrum we have the following result.

Lemma 3.2. If K0 is a compact set of the complex plane with K0 ⊂ ρ(A0), the resolvent set of A0, and
hypothesis (H1) is satisfied, then there exists ε0(K0) > 0 such that K0 ⊂ ρ(Aε) for all 0 < ε ≤ ε0(K0).
Moreover, we have the estimates:

‖(λI −Aε)−1‖L(Xε,Xαε ) ≤ C(K0), ‖(λI −Aε)−1‖L(Xε,Xε) ≤ C(K0), (3.2)

for all λ ∈ K0, 0 < ε ≤ ε0(K0).

Proof. Let us start by showing the following: if λεn ∈ ρ(Aεn) with ‖(λεnI − Aεn)−1‖L(Xεn ,X
α
εn

) ≥ kn,
kn → +∞ as n→ +∞, and λεn → λ0, then λ0 ∈ σ(A0).

Then, assume there exists a sequence {λεn} ∈ ρ(Aεn) with ‖(λεnI − Aεn)−1‖L(Xεn ,X
α
εn

) ≥ kn, and such
that λεn → λ0 as εn → 0, for some λ0. This implies that there exists fεn ∈ Xεn with ‖fεn‖Xεn = 1 and if
wεn = (λεnI −Aεn)−1fεn , then ‖wεn‖Xαεn → +∞.

If we define uεn = wεn/‖wεn‖Xαεn , then λεnuεn −Aεnuεn = fεn/‖wεn‖Xαεn , which implies

Aεnuεn = λεnuεn −
fεn

‖wεn‖Xαεn
.

Let ûεn ∈ Xα
0 satisfy the following equation,

A0ûεn = λεnMuεn −
Mfεn
‖wεn‖Xαεn

. (3.3)

If we study the norm of the right side, since
∥∥∥∥ Mfεn
‖wεn‖Xαεn

∥∥∥∥
X0

→ 0, we have, by (2.3)∥∥∥∥∥λεnMuεn −
Mfεn
‖wεn‖Xαεn

∥∥∥∥∥
X0

≤ 2|λεn |‖uεn‖Xεn +

∥∥∥∥∥ Mfεn
‖wεn‖Xαεn

∥∥∥∥∥
X0

≤ C.
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So, {ûεn} ⊂ Xα
0 is a compact family. Then, there exists a û0 ∈ Xα

0 and a subsequence, we denote it again as
ûεn , such that ûεn → û0 in Xα

0 , as εn → 0. Moreover, by hypothesis (H1), we have, ‖uεn − Eûεn‖Xαεn → 0.
And,

‖uεn − Eû0‖Xεn ≤ ‖uεn − Eûεn‖Xεn + ‖Eûεn − Eû0‖Xεn ≤

≤ ‖uεn − Eûεn‖Xεn + 2‖ûεn − û0‖X0 → 0.

So, again by (2.3),

‖Muεn − û0‖X0 = ‖M(uεn − Eû0)‖X0 ≤ 2‖uεn − Eû0‖Xεn → 0.

Hence, via subsequences, λεnMuεn−
Mfεn

‖wεn‖Xαεn
→ λ0û0 in X0 for some û0 ∈ Xα

0 . Also, from the definition

of uεn we have that ‖uεn‖Xαεn = 1. Then 1 = ‖uεn‖Xαεn ≤ ‖uεn −Eû0‖Xαεn + ‖Eû0‖Xαεn ≤ ‖uεn −Eû0‖Xαεn +
2‖û0‖Xα0 . But since ‖uεn − Eû0‖Xαεn → 0 then ‖û0‖Xα0 > 0 and hence û0 6= 0. So, from equation (3.3) and
the above estimates, we obtain A0û0 = λ0û0, which shows that λ0 ∈ σ(A0).

Next, we apply this result to prove our lemma. For the first part, we proceed as follows. If K0 ∩ σ(Aε)
is non empty for ε small enough, then there exists a sequence εn → 0 and λ̂εn ∈ K0 ∩ σ(Aεn). Since the
spectrum of Aεn is discrete for all εn, for each n we can choose λεn ∈ ρ(Aεn) such that |λεn − λ̂εn | < 1

n and
‖(λεnI − Aεn)−1‖L(Xεn ,X

α
εn

) > kn with kn → +∞. Moreover, since K0 is compact, there is a subsequence

λ̂ε̂n with λ̂ε̂n → λ0 and λ0 ∈ K0. Then, we have just proved that, λ0 ∈ σ(A0). This is a contradiction. So,
K0 ∩ σ(Aε) is empty, and then K0 ⊂ ρ(Aε) as we wanted to prove.

To obtain the desired estimates, suppose there exist sequences {λn} ∈ K0 and {εn} with εn → 0 as
n→ +∞ such that,

‖(λnI −Aεn)−1‖L(Xεn ,X
α
εn

) ≥ kn,

with kn → +∞. Since K0 is a compact set, there exists a λ0 ∈ K0 and a subsequence {λnk} ∈ K0 with
λnk → λ0, λ0 ∈ K0, and

‖(λnkI −Aεnk )−1‖L(Xεnk
,Xαεnk

) ≥ knk .

Then, we have proved above that, λ0 ∈ σ(A0). This is a contradiction because λ0 ∈ K0 ⊂ ρ(A0). So, we
have for λ ∈ K0,

‖(λI −Aε)−1‖L(Xε,Xαε ) ≤ C(K0), ‖(λI −Aε)−1‖L(Xε,Xε) ≤ C(K0).

This concludes the proof. �

Remark 3.3. The result just proved implies the uppersemicontinuity of the spectrum: if λε ∈ σ(Aε) and
λε → λ0 (via subsequences) then λ0 ∈ σ(A0).

Now we want to estimate ‖(λI +Aε)−1E − E(λI +A0)−1‖L(X0,Xαε ). We have the following result.

Lemma 3.4. With the notation above, if λ ∈ ρ(−A0) and ε is small enough so that λ ∈ ρ(−Aε) and
hypothesis (H1) is satisfied then,

‖(λI +Aε)−1E − E(λI +A0)−1‖L(X0,Xαε ) ≤ Cε3(λ)τ(ε),

where Cε3(λ) =
(

1 + |λ|
dist(λ,σ(−Aε))

)(
1 + |λ|

dist(λ,σ(−A0))

)
and τ(ε) is defined by (2.6).
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Proof. First of all notice that from Lemma 3.2 if λ ∈ ρ(−A0) then λ ∈ ρ(−Aε) for ε small enough. Hence
(λI +Aε)−1 and (λI +A0I)−1 are well defined for all λ ∈ ρ(−A0).

We are interested in estimating,

‖(λI +Aε)−1E − E(λI +A0)−1‖L(X0,Xαε ).

The first thing we are going to do is to show the following identity:

(λI +Aε)−1E − E(λI +A0)−1 = [I − (λI +Aε)−1λ](A−1
ε E − EA−1

0 )[I − λ(λI +A0)−1]. (3.4)

First, note that
(I +A−1

ε λ)[I − (Aε + λI)−1λ] = I, (3.5)
then,

(I +A−1
ε λ)(λI +Aε)−1 = A−1

ε .

Hence,
(I +A−1

ε λ)
[
(λI +Aε)−1E − E(λI +A0)−1

]
=

= A−1
ε E − E(λI +A0)−1 −A−1

ε λE(λI +A0)−1.

Since,

E(λI +A0)−1 = EA−1
0 − EA

−1
0 + E(λI +A0)−1 = EA−1

0 − EA
−1
0 [I −A0(λI +A0)−1] =

= EA−1
0 − EA

−1
0 [(A0 + λI)−1λ],

we have,
(I +A−1

ε λ)
[
(λI +Aε)−1E − E(λI +A0)−1

]
=

= A−1
ε E −A−1

ε Eλ(λI +A0)−1 − EA−1
0 + EA−1

0 [(A0 + λI)−1λ] =

= (A−1
ε E − EA−1

0 )[I − λ(λI +A0)−1].
By (3.5), [I − λ(Aε + λI)−1](I +A−1

ε λ) = I, then we obtain the desired identity (3.4),

(λI +Aε)−1E − E(λI +A0)−1 = [I − λ(Aε + λI)−1](A−1
ε E − EA−1

0 )[I − λ(λI +A0)−1].

Hence, since hypothesis (H1) is satisfied, we obtain the desired estimates,

‖(λI +Aε)−1E − E(λI +A0)−1‖L(X0,Xαε ) ≤

≤ ‖(I − λ(Aε + λI)−1‖L(Xαε ,X
α
ε )‖A−1

ε E − EA−1
0 ‖L(X0,Xαε )‖I − λ(λI +A0)−1‖L(X0,X0) ≤

≤
(

1 +
|λ|

dist(λ, σ(−Aε))

)
τ(ε)

(
1 +

|λ|
dist(λ, σ(−A0))

)
.

This concludes the proof. �

We can easily show now,

Corolary 3.5. (i) If K0 ⊂ ρ(−A0) as in Lemma 3.2 and Σ−a,φ is the set of the complex plane described by

Σ−a,φ = {λ ∈ C : |arg(λ+ a)| ≤ π − φ},
then,

sup
λ∈K0∪Σ−a,φ

Cε3(λ) ≤ C̄3.

(ii) If we take a = 0 and φ = π
4 then

Cε3(λ) ≤
(

1 +
1

sin(φ)

)2

≤ 6, for all λ ∈ Σ0,π4
. (3.6)

Remark 3.6. Note that, although Cε3(λ) depends on ε, thanks to the continuity of the eigenvalues, see
Remark 3.3, we can consider it uniform in ε.
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The estimate found in Lemma 3.4 will be applied to obtain estimates on the distance of the spectral
projections and estimates on the distance of the linear semigroups generated by A0 and Aε. Let us start
with the spectral projections.

Let us assume that for somem = 1, 2, ... we have λ0
m < λ0

m+1 and as we have mentioned in the introduction,
we denote by {ϕεi}mi=1 the first m eigenfunctions of the operator Aε, 0 ≤ ε ≤ ε0 and by Pε

m the canonical
orthogonal projection onto the subspace [ϕε1, . . . , ϕ

ε
m], that is, if 0 < ε ≤ ε0

Pε
m : Xε −→ Xε

v −→ Pε
m(v) =

∑m
i=1(v, ϕεi )Xεϕ

ε
i

(3.7)

or if ε = 0,
P0

m : X0 −→ X0

v −→ P0
m(v) =

∑m
i=1(v, ϕ0

i )X0ϕ
0
i

(3.8)

Notice that in a natural way, the projections may be defined in the intermediate space Xα
ε and, since it is a

finite linear combination of eigenfunctions, its range is contained also in Xα
ε .

We have the following estimate.

Lemma 3.7. Let {Pε
m}0≤ε≤ε0 be the family of canonical orthogonal projections described above, v ∈ X0, Γ

a curve in the complex plane which contains the first m eigenvalues of −A0 and hypothesis (H1) be satisfied.
Then,

‖Pε
mE(v)− EP0

m(v)‖Xαε ≤ CP τ(ε)‖v‖X0 ,

with CP = |Γ|
2π supλ∈Γ C

ε
3(λ), |Γ| the length of the curve Γ and Cε3 is given in Lemma 3.4.

Proof. Let Γ be the curve mentioned above. From Lemma 3.2, taking K0 = Γ, we have that Γ ⊂ ρ(−Aε) for
0 ≤ ε ≤ ε0(Γ) with ε0(Γ) small enough. The spectral projection over the eigenspace generated by the part
of the spectrum of −Aε contained “inside” the curve Γ is given by

Pε
Γ =

1
2πi

∫
Γ

(Aε + λI)−1dλ, with λ ∈ Γ, 0 ≤ ε ≤ ε0.

Therefore,

‖Pε
ΓE(v)− EP0

Γ(v)‖Xαε ≤
∣∣∣∣ 1
2πi

∣∣∣∣ ∣∣∣∣∫
Γ

‖(λI +Aε)−1E(v)− E(λI +A0)−1(v)‖Xαε dλ
∣∣∣∣ .

Applying now Lemma 3.4, we obtain

‖Pε
ΓE(v)− EP0

Γ(v)‖Xαε ≤
1

2π
|Γ| sup

λ∈Γ
C3(λ)τ(ε)‖v‖X0 = CP τ(ε)‖v‖X0 . (3.9)

Since the curve Γ encircles only the first m eigenvalues of −A0, then we know that P0
Γ = P0

m, that is, the
projection over the first m eigenfunctions. This implies that Rank(P0

Γ) = m and from (3.9), we also have
that Rank(Pε

Γ) = m and therefore we also have Pε
Γ = Pε

m. Hence, (3.9) proves the result. �

Remark 3.8. If we have the gap λεm+1 − λεm ≥ 2, which is not very restrictive in light of conditions (2.13),
we construct the curve Γ as the rectangle which contains the first m eigenvalues of −A0 described as follows,

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

where,
Γ1 = {λ ∈ C : Re(λ) = −λ0

1 + 1 and |Im(λ)| ≤ 1},
Γ2 = {λ ∈ C : −λ0

m − 1 ≤ Re(λ) ≤ −λ0
1 + 1 and Im(λ) = 1},

Γ3 = {λ ∈ C : Re(λ) = −λ0
m − 1 and |Im(λ)| ≤ 1},

and,
Γ4 = {λ ∈ C : −λ0

m − 1 ≤ Re(λ) ≤ −λ0
1 + 1 and Im(λ) = −1}.
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By Lemma 3.2, taking ε ≥ 0 small enough, the rectangle Γ contains the first m eigenvalues {λεi}mi=1. Then,
it is easy to see that

CP ≤ 24(λ0
m)3.

We can also obtain good estimates for the linear semigroups.

Lemma 3.9. Let hypothesis (H1) be satisfied. If we denote,

lαε (t) := min{t−1τ(ε), t−α}, t > 0 and α ∈ [0, 1)

then,

‖e−AεtE − Ee−A0t‖L(X0,Xαε ) ≤ 3lαε (t). (3.10)

Proof. Let Σ0,φ = {λ ∈ C : |arg(λ)| ≤ π − φ}, with φ = π
4 , and let Γ be the boundary of Σ0,π4

, that is the
curve consisting of the following segments Γ1 and Γ2,

Γ = Γ1 ∪ Γ2 = {re−i(π−φ) : −∞ < r ≤ 0} ∪ {rei(π−φ) : 0 ≤ r < +∞}

oriented such that the imaginary part grows as λ runs in Γ. We know that,

e−AεtE − Ee−A0t =
1

2πi

∫
Γ

(
(λI +Aε)−1E − E(λI +A0)−1

)
eλtdλ.

So,

‖e−AεtE − Ee−A0t‖L(X0,Xαε ) ≤
1

2π

∣∣∣∣∫
Γ

C3τ(ε)|eλt|dλ
∣∣∣∣ ,

with C3 = supλ∈Γ C3(λ). Since λ ∈ Γ,

|eλt| = |e(−re−i(π−φ))t| = e(rcos(φ))t for −∞ ≤ r ≤ 0, λ ∈ Γ1

and,

|eλt| = |e(rei(π−φ))t| = e(−rcos(φ))t for 0 ≤ r ≤ +∞, λ ∈ Γ2.

With this,

‖e−AεtE − Ee−A0t‖L(X0,Xαε ) ≤
2

2π
C3τ(ε)

∫ ∞
0

e(−rcos(φ))tdr.

We make the change of variables (rcos(φ))t = z, and then,

‖e−AεtE − Ee−A0t‖L(X0,Xαε ) ≤
1
π
C3τ(ε)

1
cos(φ)t

∫ ∞
0

e−zdz ≤ 1
πcos(φ)

C3τ(ε)t−1,

with C3 = supλ∈Γ C3(λ) ≤ 6 and, for φ = π
4 , C3

πcos(φ) < 3.

On the other hand,

‖e−AεtE − Ee−A0t‖L(X0,Xαε ) ≤ ‖e−AεtE‖L(X0,Xαε ) + ‖Ee−A0t‖L(X0,Xαε )).

Then, by Lemma 3.1 and (2.3),

‖e−AεtE − Ee−A0t‖L(X0,Xαε ) ≤ 2e−λ
ε
1t
(

max{λε1,
α

t
}
)α

+ 2e−λ
ε
1t
(

max{λε1,
α

t
}
)α
≤ 4e−λ

ε
1t
(

max{λε1,
α

t
}
)α

.

This shows the result. �

For further analysis we will include here some properties of the function lαε (t) that will be used below.
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Lemma 3.10. Let 0 ≤ γ < 1 and a > 0. If we consider, for all t > 0,

lαε (t) := min{t−1τ(ε), t−α}, with 0 ≤ α < 1, and τ(ε) −−−→
ε→0

0,

then, we have the following estimates,∫ t

0

(t− s)−γ lαε (s)ds ≤ 2γ

(1− γ)(1− α)
t−γ(| log(t)) + | log(τ(ε))|)τ(ε),∫ t

0

e−aslαε (s)ds ≤ 2
1− α

(| log(t)|+ | log(τ(ε))|)τ(ε),

and, ∫ ∞
0

e−aslαε (s)ds ≤ 2
1− α

| log(τ(ε))|τ(ε), if a ≥ 1.

Proof. To prove the first estimate, we divide the analysis in several cases. First, if 0 < t ≤ 2h(ε)
1

1−α , we
have ∫ t

0

(t− s)−γ lαε (s)ds ≤
∫ t

0

(t− s)−γs−αds = t−γ+1−α
∫ 1

0

(1− z)−γz−αdz

where we have performed the change of variables s = tz in the integral. Hence,∫ t

0

(t− s)−γ lαε (s)ds ≤ Ct−γt1−α ≤ Ct−γh(ε).

Second, if 2h(ε)
1

1−α ≤ t, then∫ t

0

(t− s)−γ lαε (s)ds ≤
∫ h(ε)

1
1−α

0

(t− s)−γs−αds+
∫ t/2

h(ε)
1

1−α
(t− s)−γs−1h(ε)ds+

∫ t

t/2

(t− s)−γs−1h(ε)ds =

I1 + I2 + I3.

We study each term separately. For the first one, I1, note that if t ≥ 2h(ε)
1

1−α and s ∈ [0, h(ε)
1

1−α ] then
t− s ≥ t

2 . So,

I1 ≤
(
t

2

)−γ ∫ h(ε)
1

1−α

0

s−αds ≤ 2γt−γ
1

1− α
h(ε),

I2 ≤ (t/2)−γ(log(t/2)− log(h(ε)
1

1−α ))h(ε) ≤ 2γt−γ(| log(t)|+ 1
1− α

| log(h(ε))|)h(ε),

I3 ≤ t−γ
∫ 1

1/2

(1− z)−γz−1dzh(ε) ≤ 2γ

1− γ
t−γh(ε) ≤ 2γ

1− γ
1

1− α
t−γh(ε).

Putting together the three estimates we show the desired estimate,∫ t

0

(t− s)−γ lαε (s)ds ≤ 2γ

(1− γ)(1− α)
t−γ(| log(t)|+ | log(h(ε))|)h(ε).

For the second estimate, we proceed as follows,∫ t

0

e−aslαε (s)ds =
∫ h(ε)

1
1−α

0

e−ass−αds+
∫ t

h(ε)
1

1−α
e−ass−1h(ε) ≤

≤ 1
1− α

h(ε) + e−ah(ε)
1

1−α
h(ε)

∣∣∣∣log(t)−
(

1
1− α

)
log(h(ε))

∣∣∣∣ ≤
≤ 2

1− α
(| log(t)|+ | log(h(ε))|)h(ε),

as we wanted to prove. For the last one, we write,∫ ∞
0

e−aslαε (s)ds =
∫ h(ε)

1
1−α

0

s−αds+
∫ 1

h(ε)
1

1−α
s−1h(ε)ds+ h(ε)

∫ ∞
1

e−ass−1ds =
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=
h(ε)
1− α

+
1

1− α
| log(h(ε))|h(ε) +

e−a

a
h(ε) ≤ 2e−a

a(1− α)
| log(h(ε))|h(ε).

Note that, if a ≥ 1 then, ∫ ∞
0

e−aslαε (s)ds ≤ 2
1− α

| log(h(ε))|h(ε).

This concludes the proof of the result. �

Remark 3.11. If t = 1, the first estimate is simplified to∫ t

0

(t− s)−γ lαε (s)ds ≤ 2γ

(1− γ)(1− α)
| log(h(ε))|h(ε). (3.11)

4. Existence of Inertial Manifolds

Our objective in this section is to construct inertial manifolds Mε, for each 0 ≤ ε ≤ ε0, which will be
invariant manifolds for the semi flow generated by (2.1) and (2.2), therefore proving Proposition 2.1. For
this purpose, we will use the Lyapunov-Perron method, see [16]. This method consists in constructing the
inertial manifold as the graph of a Lipschitz map, which is obtained as the fixed point of an appropriate
transformation. For that, observe that Lemma 3.2 and Remark 3.3 give us that if the operator A0 has
spectral gap, then the operator Aε will also have it for ε small enough. This spectral gap is essential in the
construction of the inertial manifold.

To obtain these inertial manifolds Mε, 0 ≤ ε ≤ ε0, consider m ∈ N such that λ0
m < λ0

m+1 (and therefore
λεm < λεm+1 for ε small enough) and denote by Pε

m the canonical orthogonal projection onto the eigen-
functions, {ϕεi}mi=1, corresponding to the first m eigenvalues of the operator Aε, 0 ≤ ε ≤ ε0 and Qε

m its
orthogonal complement, see (3.7) and (3.8). The Lyapunov-Perron method obtains Mε as the graph of a
function Ψε : Pε

mX
α
ε → Qε

mX
α
ε which is obtained as a fixed point of the functional

(TεΨε)(p0) =
∫ 0

−∞
eAεQ

ε
msQε

mFε(p(s) + Ψε(p(s)))ds, (4.1)

where p(s) ∈ [ϕε1, . . . , ϕ
ε
m] is the globally defined solution of{

pt = −Aεp+ Pε
mFε(p+ Ψε(p(t)))

p(0) = p0.
(4.2)

Following [16] it can be seen that:

Proposition 4.1. Assume hypotheses (H1) and (H2) are satisfied. If m is such that

λ0
m+1 − λ0

m ≥ 12LF [(λ0
m+1)α + (λ0

m)α]

(λ0
m)1−α ≥ 24LF (1− α)−1

then equation (2.2) has an inertial manifoldMε given as the graph of a Lipschitz function Ψε : [ϕε1, . . . , ϕ
ε
m]→

Qε
mXε satisfying

supp(Ψε) ⊂ {φ ∈ Pε
mX

α
ε , ‖φ‖Xαε ≤ R}

‖Ψε(p)‖Xαε ≤ L0

‖Ψε(p)−Ψε(p′)‖Xαε ≤ L1‖p− p′‖Xαε
for certain L0, L1 independent of ε.
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Proof. Observe that if m is such that the gap conditions of the proposition hold, then for ε small enough we
have

(λεm)1−α ≥ 12LF (1− α)−1

λεm+1 − λεm ≥ 6LF [(λεm+1)α + (λεm)α] (4.3)

which are the gap conditions needed in [16] to obtain the inertial manifolds for each ε small enough. �

With the definition of the isomorphism jε, (2.9), we may define now the inertial manifolds Φε : Rm →
Qε

mX
α
ε as Φε = Ψε ◦ j−1

ε . Notice also that since Ψε is a fixed point of Tε, then the function Φε satisfies,

(TεΦε)(p̄0) =
∫ 0

−∞
eAεQ

ε
msQε

mFε
(
p(s) + Φε(jε(p(s)))

)
ds, (4.4)

where p(s) is the solution of (4.2) with p0 = j−1
ε (p̄0) or equivalently, p(s) is the solution of{

pt = −Aεp+ Pε
mFε(p+ Φε ◦ jε(p(t)))

p(0) = j−1
ε (p̄0). (4.5)

It is an easy exercise now to show that these functions Φε are the inertial manifolds from Proposition 2.1.

5. Rate of convergence of the inertial manifolds

Once we have proved the existence of the inertial manifolds Mε, ε ≥ 0 and therefore we have fixed the
value of m, we are interested in obtaining the rate of convergence of these inertial manifolds as ε → 0. To
accomplish this, we will need to subtract the integral expressions (4.4) for ε = 0 and ε > 0 and make several
estimates on these differences. Therefore, we will need first to obtain good estimates on the behavior of the
semigroup acting in the spaces Pε

mX
α
ε and Qε

mX
α
ε .

Lemma 5.1. Let hypothesis (H1) be satisfied and Γ a curve in the complex plane which contains the first
m eigenvalues of −A0. Then,

‖e−AεtPε
mE − Ee−A0tP0

m‖L(X0,Xαε ) ≤ C4e
−(λ0

m+ν)tτ(ε), t ≤ 0,

with C4 = |Γ|
2π supλ∈Γ C

ε
3(λ).

Proof. Let us consider the curve Γ as the rectangle which contains the first m eigenvalues of −A0 described
as follows,

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

where,
Γ1 = {λ ∈ C : Re(λ) = −λ0

1 + ν and |Im(λ)| ≤ 1},
Γ2 = {λ ∈ C : −λ0

m − ν ≤ Re(λ) ≤ −λ0
1 + ν and Im(λ) = 1},

Γ3 = {λ ∈ C : Re(λ) = −λ0
m − ν and |Im(λ)| ≤ 1},

and,
Γ4 = {λ ∈ C : −λ0

m − ν ≤ Re(λ) ≤ −λ0
1 + ν and Im(λ) = −1}.

We know that,

e−AεtPε
mE − Ee−A0tP0

m =
1

2πi

∫
Γ

(
(λI +Aε)−1E − E(λI +A0)−1

)
eλtdλ.

So,

‖e−AεtPε
mE − Ee−A0tP0

m‖L(X0,Xαε ) ≤
1

2π

∫
Γ

‖(λI +Aε)−1E − E(λI +A0)−1‖L(X0,Xαε )|eλt|dλ.

Applying Lemma 3.4, for t ≤ 0 we have,

‖e−AεtPε
mE − Ee−A0tP0

m‖L(X0,Xαε ) ≤
|Γ|
2π

sup
λ∈Γ

Cε3(λ)τ(ε) sup
λ∈Γ

eRe(λ)t = C4e
−(λ0

m+ν)tτ(ε),

with C4 = |Γ|
2π supλ∈Γ C

ε
3(λ) and |Γ| the length of the curve Γ.
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�

With respect to the behavior of the linear semigroup in the subspace Qε
mX

α
ε , notice that we have the

expression

e−AεQ
ε
mtu =

∞∑
i=m+1

e−λ
ε
i t(u, ϕεi )ϕ

ε
i .

Hence, following a similar proof as Lemma 3.1, we get

‖e−AεQ
ε
mt‖L(Xε,Xε) ≤ e

−λεm+1t,

and,

‖e−AεQ
ε
mt‖L(Xε,Xαε ) ≤ e−λ

ε
m+1t

(
max{λεm+1,

α

t
}
)α

, (5.1)

for t ≥ 0.

Before continuing, we now present technical lemmas henceforward needed.

Lemma 5.2. Let a be a positive constant, a > 0, α ∈ (0, 1) and λ > 0 a positive real number. We have the
following estimate, ∫ ∞

0

e−as
(

max{λ, α
s
}
)α

ds ≤ (1− α)−1λα−1 + λαa−1.

Proof. Let α ∈ (0, 1) and λ a real positive number. Then we know that

max{λ, α
s
} =

{
α
s if 0 < s ≤ α

λ

λ if α
λ < s <∞.

So, ∫ ∞
0

(
max{λ, α

s
}
)α

e−asds =
∫ α

λ

0

(α
s

)α
e−asds+

∫ ∞
α
λ

λαe−asds =

= αα
∫ α

λ

0

s−αe−asds+ λα
∫ ∞
α
λ

e−asds =

= αα
(α
λ

)1−α
(1− α)−1 + λαe−

aα
λ a−1 ≤

≤ (1− α)−1λα−1 + λαa−1,

as we wanted to prove. �
Now, with respect to the comparison of both semigroups e−Aεt and e−A0t in Qε

mX
α
ε and Q0

mX
α
0 , we have

the following estimates,

Lemma 5.3. Let hypothesis (H1) be satisfied. If, for t > 0, as before we denote by

lαε (t) := min{t−1τ(ε), t−α},

then, for each ν > 0 small, m ∈ N and t > 0,

‖e−AεtQε
mE − Ee−A0tQ0

m‖L(X0,Xαε ) ≤ 3e−(λ0
m+1−ν)tlαε (t).
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Proof. From Lemma 3.2 and Remark 3.3, we know that there is a real number ε0 = ε0(m) such that, for
0 ≤ ε ≤ ε0, there is a gap between the mth-eigenvalue, −λεm, and m + 1-eigenvalues, −λεm+1, of −Aε. We
denote by Γm the boundary of Σb,φ = {λ ∈ C : |arg(λ− b)| ≤ π−φ}, with φ = π

4 and b = −λ0
m+1 + ν. That

is,
Γm = Γ1

m ∪ Γ2
m = {b+ re−i(π−φ) : −∞ < r ≤ 0} ∪ {b+ rei(π−φ) : 0 ≤ r < +∞},

oriented such that the imaginary part grows as λ runs in Γ.
With this,

e−AεtQε
mE − Ee−A0tQ0

m =
1

2πi

∫
Γm

(
(λ+Aε)−1E − E(λ+A0)−1

)
eλtdλ.

Then,

‖e−AεtQε
mE − Ee−A0tQ0

m‖L(X0,Xαε ) ≤
1

2π

∣∣∣∣∫
Γm

‖
(
(λ+Aε)−1E − E(λ+A0)−1

)
‖L(X0,Xαε )|eλt|dλ

∣∣∣∣ ,
applying Lemma 3.4

‖e−AεtQε
mE−Ee−A0tQ0

m‖L(X0,Xαε ) ≤
supλ∈Γm C3(λ)τ(ε)

2π

∣∣∣∣∫
Γm

|eλt|dλ
∣∣∣∣ =

supλ∈Γm C3(λ)τ(ε)
π

∣∣∣∣∣
∫

Γ2
m

|eλt|dλ

∣∣∣∣∣ .
Since λ ∈ Γ2

m,
|eλt| = e(b−rcos(φ))t.

So,

‖e−AεtQε
mE − Ee−A0tQ0

m‖L(X0,Xαε ) ≤
supλ∈Γm C3(λ)τ(ε)

π

∫ ∞
0

e(b−rcos(φ))t|e−i(π−φ)|dr.

We make the change of variables (−b+ rcos(φ))t = z,

‖e−AεtQε
mE − Ee−A0tQ0

m‖L(X0,Xαε ) ≤
supλ∈Γm C3(λ)τ(ε)

πcos(φ)t

∫ ∞
−bt

e−zdz =

=
supλ∈Γm C3(λ)

πcos(φ)
t−1e(−λ0

m+1+ν)tτ(ε) < 3t−1e(−λ0
m+1+ν)tτ(ε),

the last inequality is obtained taking φ = π
4 .

On the other side, we know that,

‖e−AεtQε
mE − Ee−A0tQ0

m‖L(X0,Xαε ) ≤

‖e−AεtQε
mE‖L(X0,Xαε ) + ‖Ee−A0tQ0

m‖L(X0,Xαε ).

Then, by (5.1),

≤ 2e−λ
ε
m+1t

(
max{λεm+1,

α

t
}
)α

+ 2e−λ
0
m+1t

(
max{λ0

m+1,
α

t
}
)α
≤

≤ 4e−λ
0
m+1t

(
max{(λ0

m+1)α, t−α}
)
.

So, if we put everything together,

‖e−AεtQε
mE − Ee−A0tQ0

m‖L(X0,Xαε ) ≤ 3 min
{
t−1τ(ε),max{(λ0

m+1)α, t−α}
}
e(−λ0

m+1+ν)t =

= 3 min
{
t−1τ(ε), t−α

}
e(−λ0

m+1+ν)t = 3lαε e
(−λ0

m+1+ν)t,

as we wanted to prove.
�

We may show now the following result.

Lemma 5.4. Let wε ∈ Pε
mXε and w0 ∈ P0

mX0. Then, for ε small enough and for 0 ≤ α < 1,

|jε(wε)− j0(w0)|α ≤ 3‖wε − Ew0‖Xαε + 3CP τ(ε)‖w0‖X0 .
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Proof. Since ϕ0
i = P0

m(ϕ0
i ), then if we denote by jε(wε) = p̄ε and j0(w0) = p̄0

wε − Ew0 =
m∑
I=1

pεiP
ε
m(Eϕ0

i )− E
m∑
i=1

p0
iP

0
mϕ

0
i = (Pε

mE − EP0
m)

(
m∑
I=1

pεiϕ
0
i

)
+ E

m∑
i=1

(pεi − p0
i )ϕ

0
i

Applying the operator M and using that M ◦ E = I, we get

m∑
i=1

(pεi − p0
i )ϕ

0
i = M(wε − Ew0)−M(Pε

mE − EP0
m)

(
m∑
I=1

pεiϕ
0
i

)
Taking the Xα

0 norm in the last expression and with (2.3), Lemma 3.7 and (2.12), we get

|p̄ε − p̄0|α ≤ 2‖wε − Ew0‖Xαε + 2Cpτ(ε)|p̄ε| ≤ 2‖wε − Ew0‖Xαε + 2Cpτ(ε)|p̄ε − p̄0|+ 2Cpτ(ε)|p̄0|.

From here, we get

|p̄ε − p̄0|α ≤
2

1− 2CP τ(ε)
‖wε − Ew0‖Xαε +

2
1− 2CP τ(ε)

Cpτ(ε)|p̄0|.

Taking ε small enough so that 2
1−2CP τ(ε) ≤ 3 and since |p̄0| = ‖w0‖X0 , we prove the result. �

Next, we introduce some technical results.

Lemma 5.5. For every Φε ∈ FL with L ≤ 1 and any p̄0 ∈ Rm, if pε(t) is the solution of (4.5), we have,

‖pε(t)‖Xαε ≤
(
‖j−1
ε (p̄0)‖Xαε +

CF
(λεm)1−α

)
e−λ

ε
mt, t ≤ 0,

Proof. By the variation of constant formula for t ≤ 0,

‖pε(t)‖Xαε ≤ ‖e
−Aεtj−1

ε (p̄0)‖Xαε +
∫ 0

t

‖e−Aε(t−s)Pε
mFε(pε(s) + Φεj−1

ε (pε(s)))‖Xαε ds

≤ e−λ
ε
mt‖j−1

ε (p̄0)‖Xαε +
∫ 0

t

e−λ
ε
m(t−s)(λεm)α‖Pε

mFε(pε(s) + Φεj−1
ε (pε(s)))‖Xεds

≤ e−λ
ε
mt‖j−1

ε (p̄0)‖Xαε +
∫ 0

t

e−λ
ε
m(t−s)(λεm)αCF ds ≤

(
‖j−1
ε (p̄0)‖Xαε +

CF
(λεm)1−α

)
e−λ

ε
mt

�

Let Φ0 and Φε be the inertial manifolds constructed above. If p̄0 ∈ Rm, we denote by p0(t) ∈ P0
mX

α
0 and

pε(t) ∈ Pε
m(Xα

ε ) the solutions of the initial value problems, respectively,

p0t = −A0p0 + P0
mF0(p0 + Φ0(j0(p0))), p0(0) = j−1

0 p̄0, (5.2)

and
pεt = −Aεpε + Pε

mFε(pε + Φε(jε(pε))), pε(0) = j−1
ε p̄0 (5.3)

We have now,

Lemma 5.6. With the notations above, we have, for t ≤ 0,

‖pε(t)− Ep0(t)‖Xαε ≤
(

1
12

sup
p̄∈Rm

‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε) +K2(|t|+ e−2νt)τ(ε)
)
e−(λεm+4LF (λεm)α)t

with K2 = (6(λ0
m)αLFCP + C4)(|p̄0|+ CF ) and C4 is the constant from Lemma 5.1.
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Proof. To simplify the notation below, we denote by F̃ε = Fε(pε(s) + Φε(jε(pε(s)))) and similarly, F̃0 =
F0(p0(s) + Φ0(j0(p0(s)))). By the variation of constants formula applied to (5.2) and (5.3) we get

pε(t)− Ep0(t) = e−Aεtj−1
ε (p̄0)− Ee−A0tj−1

0 (p̄0) +
∫ t

0

(
e−Aε(t−s)Pε

mF̃ε − Ee−A0(t−s)P0
mF̃0

)
ds

= e−Aεtj−1
ε (p̄0)−Ee−A0tj−1

0 (p̄0)+
∫ t

0

e−Aε(t−s)Pε
m(F̃ε−EF̃0)ds+

∫ t

0

(e−Aε(t−s)Pε
mE−Ee−A0(t−s)P0

m)F̃0ds

= I1 + I2 + I3

Observe that, with the definition of jε and with the aid of Lemma 5.1, we get

‖I1‖Xαε = ‖(e−AεtPε
mE − Ee−A0tP0

m)(
m∑
i=1

p0
iϕ

0
i )‖Xαε ≤ C4e

−(λ0
m+ν)tτ(ε)|p̄0|

Moreover, we have

F̃ε − EF̃0 = Fε(pε + Φε(jε(pε)))− Fε(Ep0 + Φε(jε(pε)))

+Fε(Ep0 + Φε(jε(pε)))− Fε(Ep0 + Φε(j0(p0)))

+Fε(Ep0 + Φε(j0(p0))− Fε(Ep0 + EΦ0(j0(p0)))

+Fε(Ep0 + EΦ0(j0(p0))− EF0(p0 + Φ0(j0(p0)))

(5.4)

which implies

‖F̃ε − EF̃0‖Xε ≤ LF ‖pε − Ep0‖Xαε + LF · L|jε(pε)− j0(p0))|α + LF sup
p̄∈Rm

‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε)

Taking into account Lemma 5.4 , we get

‖F̃ε − EF̃0‖Xε ≤ 4LF ‖pε − Ep0‖Xαε + 3LFCP τ(ε)‖p0‖X0 + LF sup
p̄∈Rm

‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε)

which implies with Lemma 5.5 and using that λεm ≥ 1,

‖F̃ε − EF̃0‖Xε ≤ 4LF ‖pε − Ep0‖Xαε + 3LFCP τ(ε)(|p̄0|+ CF )e−λ
ε
ms+

+LF sup
p̄∈Rm

‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε)
(5.5)

In particular, we obtain:

‖I2‖Xαε ≤ (λεm)α
∫ 0

t

e−λ
ε
m(t−s)‖F̃ε − EF̃0‖Xεds

That is,



18 J. M. ARRIETA AND E. SANTAMARÍA

‖I2‖Xαε ≤ 4LF (λεm)α
∫ 0

t

e−λ
ε
m(t−s)‖pε(s)− Ep0(s)‖Xαε ds+ (λεm)α3LFCP (|p̄0|+ CF )|t|τ(ε)e−λ

ε
mt+

+(λεm)α
(
LF sup

p̄∈Rm
‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε)

)
e−λ

ε
mt − 1
λεm

≤
(

LF
(λεm)1−α sup

p̄∈Rm
‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε) +K1|t|τ(ε)

)
e−λ

ε
mt+

+4LF (λεm)α
∫ 0

t

e−λ
ε
m(t−s)‖pε(s)− Ep0(s)‖Xαε ds

≤
(

1
12

sup
p̄∈Rm

‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε) +K1|t|τ(ε)
)
e−λ

ε
mt+

+4LF (λεm)α
∫ 0

t

e−λ
ε
m(t−s)‖pε(s)− Ep0(s)‖Xαε ds

where we have denoted by K1 = 6(λ0
m)αLFCP (|p̄0|+CF ) and we have used that λεm > 1 and (λεm)α ≤ 2(λ0

m)α

Finally,

‖I3‖Xαε ≤ C4τ(ε)CF
∫ 0

t

e−(λ0
m+ν)(t−s)ds ≤ C4τ(ε)CF e−(λ0

m+ν)t

Putting the three expressions together, we get

‖pε(t)− Ep0(t)‖Xαε ≤ C4(|p̄0|+ CF )e−(λ0
m+ν)tτ(ε)+(

1
12

sup
p̄∈Rm

‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε) +K1|t|τ(ε)
)
e−λ

ε
mt + 4LF (λεm)α

∫ 0

t

e−λ
ε
m(t−s)‖pε(s)− Ep0(s)‖Xαε ds.

Multiplying this inequality by eλ
ε
mt, denoting by h(t) = eλ

ε
mt‖pε(t) − Ep0(t)‖Xαε and assuming ε is small

enough so that |λεm − λ0
m| < ν, we may write

h(t) ≤
(

1
12

sup
p̄∈Rm

‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε) +K2(|t|+ e−2νt)τ(ε)
)

+ 4LF (λεm)α
∫ 0

t

h(s)ds

where K2 = (6(λ0
m)αLFCP + C4)(|p̄0|+ CF ). Applying Gronwall inequality, we get,

h(t) ≤
(

1
12

sup
p̄∈Rm

‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε) +K2(|t|+ e−2νt)τ(ε)
)
e−4LF (λεm)αt

which implies that

‖pε(t)− Ep0(t)‖Xαε ≤
(

1
12

sup
p̄∈Rm

‖Φε(p̄)− EΦ0(p̄)‖Xαε + ρ(ε) +K2(|t|+ e−2νt)τ(ε)
)
e−(λεm+4LF (λεm)α)t

which shows the result. �

With these results, we have all the needed tools to estimate the rate of convergence of the inertial manifolds,
proving the main result of the article
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Proof. Notice that we have

Φ0(p̄0) =
∫ 0

−∞
eA0sQ0

mF0

(
p0(s) + Φ0(j0(p0(s)))

)
ds, (5.6)

and

Φε(p̄0) =
∫ 0

−∞
eAεsQε

mFε
(
pε(s) + Φε(jε(pε(s)))

)
ds, (5.7)

where p0(s) and pε(s) are the solutions of (5.2) and (5.3). Denoting, as in the proof of the previous Lemma,
F̃ε = Fε(pε(s) + Φε(jε(pε(s)))) and F̃0 = F0(p0(s) + Φ0(j0(p0(s))))

Φε(p̄0)− EΦ0(p̄0) =
∫ 0

−∞

(
eAεsQε

mF̃ε − EeA0sQ0
mF̃0

)
ds =

=
∫ 0

−∞
eAεsQε

m(F̃ε − EF̃0)ds+
∫ 0

−∞

(
eAεsQε

mE − EeA0sQ0
m

)
F̃0ds = I1 + I2.

With (5.1)

‖I1‖Xαε ≤
∫ 0

−∞
eλ

ε
m+1s

(
max{λεm+1,

α

t
}
)α
‖F̃ε − EF̃0‖Xεds.

Now, with the decomposition as in (5.4) and with (5.5) and denoting by ‖EΦ0−Φε‖∞ = ‖EΦ0−Φε‖L∞(Rm,Xαε ),
we obtain

‖I1‖Xαε ≤
∫ 0

−∞
eλ

ε
m+1s

(
max{λεm+1,

α

s
}
)α [

4LF ‖pε(s)− Ep0(s)‖Xαε + 3LFCpτ(ε)(|p̄0|+ CF )e−λ
ε
ms+

+LF ‖EΦ0 − Φε‖∞ + ρ(ε)] ds

= 4LF
∫ 0

−∞
eλ

ε
m+1s

(
max{λεm+1,

α

s
}
)α
‖pε(s)− Ep0(s)‖Xαε ds+

+3LFCpτ(ε)(|p̄0|+ CF )
∫ 0

−∞
e(λεm+1−λ

ε
m)s
(

max{λεm+1,
α

s
}
)α

ds+

+ρ(ε)
∫ 0

−∞
eλ

ε
m+1s

(
max{λεm+1,

α

s
}
)α

ds

+LF ‖EΦ0 − Φε‖∞
∫ 0

−∞
eλ

ε
m+1s

(
max{λεm+1,

α

s
}
)α

ds.

The second term in the last expression can be estimated with Lemma 5.2, since∫ 0

−∞
e(λεm+1−λ

ε
m)s
(

max{λεm+1,
α

s
}
)α
≤ (1− α)−1(λεm+1)α−1 + (λεm+1)α(λεm+1 − λεm)−1

which is uniformly bounded as ε → 0. Then, the second term is bounded by C(|p̄0| + 1)τ(ε) with C a
constant independent of ε. Similar estimate is obtained for the third term: it will be bounded by Cρ(ε) with
C a constant independent of ε.

For the fourth term∫ 0

−∞
eλ

ε
m+1s

(
max{λεm+1,

α

s
}
)α
≤ (1− α)−1(λεm+1)α−1 + (λεm+1)α−1 ≤ 2(1− α)−1(λεm+1)α−1.

Which implies that ,

LF ‖EΦ0 − Φε‖∞
∫ 0

−∞
eλ

ε
m+1s

(
max{λεm+1,

α

s
}
)α

ds ≤ 2LF (1− α)−1(λεm+1)α−1‖EΦ0 − Φε‖∞
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The first term need to be estimated with the aid of Lemma 5.6. Notice that,

4LF
∫ 0

−∞
eλ

ε
m+1s

(
max{λεm+1,

α

s
}
)α
‖pε(s)− Ep0(s)‖Xαε ds ≤

≤ LF
3
‖EΦ0 − Φε‖∞

∫ 0

−∞
e(λεm+1−λ

ε
m−4LF (λεm)α)s

(
max{λεm+1,

α

s
}
)α

ds+

+4LF ρ(ε)
∫ 0

−∞
e(λεm+1−λ

ε
m−4LF (λεm)α)s

(
max{λεm+1,

α

s
}
)α

ds+

+4K2LF τ(ε)
∫ 0

−∞
e(λεm+1−λ

ε
m−4LF (λεm)α)s

(
max{λεm+1,

α

s
}
)α

(|s|+ e−2νs)ds

With similar arguments as above, the last two terms are bounded by Cρ(ε) and Cτ(ε) with C a constant
independent of ε.

The first term is bounded by

LF
3
‖EΦ0 − Φε‖∞

(
(1− α)−1(λεm+1)α−1 +

(λεm+1)α

λεm+1 − λεm − 4LF (λεm)α

)
Putting all these estimates together, we have

‖I1‖Xαε ≤
[
2LF (1− α)−1(λεm+1)α−1 +

LF
3

(
(1− α)−1(λεm+1)α−1 +

(λεm+1)α

λεm+1 − λεm − 4LF (λεm)α

)]
‖EΦ0−Φε‖∞+

+C(|p̄0|+ 1)τ(ε) + Cρ(ε) ≤
(

3LF (1− α)−1(λεm+1)α−1 +
LF (λεm+1)α

λεm+1 − λεm − 4LF (λεm)α

)
‖EΦ0 − Φε‖∞

+C(|p̄0|+ 1)τ(ε) + Cρ(ε) ≤ 1
2
‖EΦ0 − Φε‖∞ + C(|p̄0|+ 1)τ(ε) + Cρ(ε)

where we have used (4.3).
Now we estimate I2.

‖I2‖Xαε ≤
∫ 0

−∞
‖
(
eAεsQε

m − EeA0sQ0
m

)
‖L(X0,Xαε )‖F̃0‖X0ds ≤

∫ 0

−∞
3e−(λ0

m+1−ν)tlαε (t)CF dt ≤
6CF
1− α

τ(ε)| log(τ(ε))|

where we have used Lemma 5.3 and Lemma 3.10.
Putting together the estimates for I1 and I2, we get

‖Φε(p̄0)− EΦ0(p̄0)‖Xαε ≤
1
2
‖Φε − EΦ0‖∞ + C(|p̄0|+ 1)τ(ε) + Cρ(ε) +

6CF
1− α

τ(ε)| log(τ(ε))|

Now since Φε and Φ0 are of compact support, we take the sup norm for p̄0 with |p̄0| ≤ R, where R is an
upper bound of the support of all inertial manifolds and obtain

‖Φε − EΦ0‖∞ ≤
1
2
‖EΦ0 − Φε‖∞ + C(R+ 1)τ(ε) + Cρ(ε) +

6CF
1− α

τ(ε)| log(τ(ε))|

which implies that
‖Φε − EΦ0‖∞ ≤ C(ρ(ε) + τ(ε)| log(τ(ε))|)

which shows the theorem. �
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